Characteristics of new-particle formation at three SMEAR stations

Abstract

We analyzed the size distributions of atmospheric aerosol particles measured during 2013-2014 at Varrio (SMEAR I) in northern Finland, Hyytiala (SMEAR II) in southern Finland and Jarvselja (SMEAR-Estonia) in Estonia. The stations are located on a transect spanning from north to south over 1000 km and they represent different environments ranging from subarctic to the hemi-boreal. We calculated the characteristics of new-particle-formation events, such as the frequency of events, growth rate of nucleation mode particles, condensation and coagulation sinks, formation rate of 2 nm and 3 nm particles, and source rate of condensable vapors. We observed 59, 185 and 108 new-particle-formation events at Varrio, Hyytiala and Jarvselja, respectively. The frequency of the observed events showed an annual variation with a maximum in spring. The analysis revealed size dependence of growth rate at all locations. We found that the growth rate and source rate of a condensable vapor were the highest in Jarvselja and the lowest in Varrio. The condensation sink and particle formation rate were of a similar magnitude at Hyytiala and Jarvselja, but several times smaller at Varrio. Tracking the origin of air masses revealed that the number concentration of nucleation mode particles (3-25 nm) varied from north to south, with the highest concentrations at Jarvselja and lowest at Varrio. Trajectory analysis indicated that new-particle-formation events are large-scale phenomena that can take place concurrently at distant stations located even 1000 km apart. We found a total of 26 days with new-particle-formation events occurring simultaneously at all three stations.

Publication
BOREAL ENVIRONMENT RESEARCH

Sarnaseid